Modeling Gravity Wave in 3D with OpenFoam
in an Aluminum Reduction Cell
with Regular and Irregular Cathode Surfaces

Marc Dupuis (G B INISII

Michaél Pagé "~/ SIMLJ-

SIMULATION NUMERIQUE

Feb 14-18,D t Nashville,
:I;MSZP"G ebruary Downtown Nashville :

Tennessee, Music City Center




Plan of the Presentation

* Introduction

— Most recent and advanced irregular cathode surface design
modeling paper from China (Metallurgical Transaction B 2014)

— Results of the first MHD-Valdis cell stability study (TMS 2013)
— Results of the last MHD-Valdis cell stability study (TMS 2015)

« OpenFoam and the free interface wave problem

- 3D OpenFoam VOF gravity wave side slice
model

— Cathode with flat surface base case model
— Cathode with longitudinal ridges model

 Future work
« Conclusions

Feb 14-18, D t Nashville,
:I;MSZP"G ebruary owntown Nashville

Tennessee, Music City Center




Introduction

Examples of irregular cathode surface design
in use in China: transversal and longitudinal ridges

Ref: N. Feng and al., “Research and Application of Energy Saving Technology
for Aluminum Reduction in China,” TMS Light Metals 2012, 563-568.
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Introduction

Most recent and advanced irregular cathode surface
desigh modeling paper from China
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Ref: Q. Wang and al., “Simulation of Magnetohydrodynamic Multiphase Flow Phenomena and
Interface Fluctuation in Aluminum Electrolitic Cell with Innovative Cathode”, Metallurgical
and Materials Transactions B, Vol 45B 2014, 272-294
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Introduction

Most recent and advanced irregular cathode surface
designh modeling paper from China

Ref: Q. Wang and al., “Simulation of Magnetohydrodynamic Multiphase Flow Phenomena and
Interface Fluctuation in Aluminum Electrolitic Cell with Innovative Cathode”,
Metallurgical and Materials Transactions B, Vol 45B 2014, 272-294
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Introduction

Steady-state 3D MHD VOF model results obtained
using ANSYS and CFX
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Ref: Q. Wang and al., “Simulation of Magnetohydrodynamic Multiphase Flow Phenomena and
Interface Fluctuation in Aluminum Electrolitic Cell with Innovative Cathode”,
Metallurgical and Materials Transactions B, Vol 45B 2014, 272-294
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Introduction

Steady-state 3D MHD VOF model results obtained
using ANSYS and CFX
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Duct end

Ref: Q. Wang and al., “Simulation of Magnetohydrodynamic Multiphase Flow Phenomena and
Interface Fluctuation in Aluminum Electrolitic Cell with Innovative Cathode”,
Metallurgical and Materials Transactions B, Vol 45B 2014, 272-294

Feb 14-18,D t Nashville,
:I;MSZP"G ebruary owntown Nashville

Tennessee, Music City Center



Introduction

Results of the first MHD-Valdis cell stability study

The effect of bottom friction enhancing
elements is evaluated using the depth
sensitive turbulent velocity model. The
sloshing gravity wave without MHD
interaction is confirmed to be damped
moderately in the presence of the bottom
ridge elements.
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Ref: V. Bojarevics, “MHD of Aluminium Cells with the Effect of Channels and
Cathode Perturbation Elements,” TMS Light Metals 2013, 609-614.
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Introduction

Results of the last MHD-Valdis cell stability study
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Ref: M. Dupuis and V. Bojarevics, “Non-linear Stability Analysis of Cells Having
Different Types of Cathode Surface Geometry”, TMS Light Metals 2015, 821-826.
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Introduction

Results of the last MHD-Valdis cell stability study
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Ref: M. Dupuis and V. Bojarevics, “Non-linear Stability Analysis of Cells Having
Different Types of Cathode Surface Geometry”, TMS Light Metals 2015, 821-826.
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Introduction

Results of the last MHD-Valdis cell stability study
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Introduction

Results of the last MHD-Valdis cell stability study
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OpenFOAM: Executive Overview (4

What is OpenFOAM?

¢ OpenFOAM is a free-to-use Open Source numerical simulation software with
extensive CFD and multi-physics capabilities

e Free-to-use means using the software without paying for license and support,
including massively parallel computers: free 1000-CPU CFD license!

e Software under active development, capabilites mirror those of commercial CFD
e Substantial installed user base in industry, academia and research labs

e Possibility of extension to non-traditional, complex or coupled physics:
Fluid-Structure Interaction, complex heat/mass transfer, internal combustion
engines, nuclear

Main Components
e Discretisation: Polyhedral Finite Volume Method, second order in space and time

e Lagrangian particle tracking, Finite Area Method (2-D FVM on curved surface)

e Massive parallelism in domain decomposition mode

¢ Automatic mesh motion (FEM), support for topological changes
¢ All components implemented in library form for easy re-use

¢ Physics model implementation through equation mimicking

OpenFOAM: A User View —p. 3
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Some OpenFoam VOF Applications
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Top experimental, middle OpenFOAM 2.1.1, bottom CFX 14.0

Ref: S. Hansch, D. Lucas, T. Hohne, E. Krepper and G. Montoya, “Comparative Simulations of
Free Surface Flows Using VOF-Methods and a New Approach for Multi-Scale Interfacial
Structures”, Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting.
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3D OpenFoam VOF Gravity Wave Model

Top View
17540 mm

Cross Section Longitudinal Section

Sketch of the GY420 cell design that inspired the cell side slice model geometry
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3D OpenFoam VOF Gravity Wave Model
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Geometry of the cell side slice model
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3D OpenFoam VOF Gravity Wave Model
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3D OpenFoam VOF Gravity Wave Model

« The model contains 1,180,980 hex
finite volumes with an orthogonal

quality of 0.77

 The model is using k-w SST (shear
stress transport) turbulence model

« The bath and metal properties used
where obtained using Perter Entner’s

AlWeb application
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« The transient evolution of the system was calculated for a total of 60 seconds, using
the multiphase Euler solver available in OpenFoam 2.3.0

« The transient evolution of the system was calculates using a maximum courant
number of 0.05 and a maximum time step of 0.002 seconds

« The calculations were performed using a Dell 28 cores Xeon ES-2697 V3 computer

having 128 GB of RAM at its disposal

«  That computer took about 30 CPU hours to solve that problem using all 28 cores
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3D OpenFoam VOF Gravity Wave Model
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3D OpenFoam VOF Gravity Wave Model
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WI \ O'F]l lil || O -

0 0.0291

ESSESEEENERE SRR RRREE, EABEREEE
e e e e e e e e o i o P Sy e e

Velocity field after 30 seconds, bath region is in gray

Feb 14-18, Downtown Nashville,
IMSZ&O"G ebruary owntown Nashville »

Tennessee, Music City Center




3D OpenFoam VOF Gravity Wave Model

Velocity vector m/s
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3D OpenFoam VOF Gravity Wave Model

Nu turbulent mA2/s
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3D OpenFoam VOF Gravity Wave Model

Nu furbulent MA2/s
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3D OpenFoam VOF Gravity Wave Model
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Metal laminar viscosity: 3.224e-7 m?/s

Turbulent viscosity after 60 seconds, bath volumes are visible
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3D OpenFoam VOF Gravity Wave Model

Aluminium-bath interface elevation in meters
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Position of the bath-metal interface every 15 seconds from 0 to 45 seconds
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3D OpenFoam VOF Gravity Wave Model

Vertical interface position of the from left corner
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3D OpenFoam VOF Gravity Wave Model

Geometry of the irregular cathode cell side slice model
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3D OpenFoam VOF Gravity Wave Model
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3D OpenFoam VOF Gravity Wave Model

Velocity vector m/s
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3D OpenFoam VOF Gravity Wave Model
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3D OpenFoam VOF Gravity Wave Model

Aluminium-bath interface elevation in meters
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Position of the bath-metal interface every 15 seconds from 0 to 45 seconds
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3D OpenFoam VOF Gravity Wave Model

Top surface = Aluminium interface irregular anode
Bottom surface = Aluminium interface regular anode
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3D OpenFoam VOF Gravity Wave Model

Vertical interface position of the from left corner
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Future Work

 For a cell design having 48 anodes,
modeling a longitudinal gravitational
wave in a half cell model using the
same mesh refinement used in that
study would require a model more
than 24 times bigger.

 Even with a linear increased of the
required CPU time, solving such a
half cell slice model would require
about 750 CPU hours which is about
1 month of CPU time on the computer
used in this study.

« Adding the MHD physic to an even
bigger 3D full cell OpenFoam model
is also quite possible to do.
OpenFoam has already been
successfully used to solve MHD
flows.
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Conclusions

- A lateral gravity wave have been successfully simulated in a 3D cell side slice
model using the VOF formulation in OpenFoam.

» Solving for just 60 seconds of transient evolution using a Dell 28 cores Xeon
ES-2697 V3 computer took about 30 CPU hours.

« Comparing regular flat cathode case model results with the irregular cathode
surface case model results revealed that there is definitively less overshoot in
the case of the irregular cathode so clearly there is somewhat more damping
in that second case.

* Yet this observation is not in contradiction with what was previously
published using MHD-Valdis 2D shallow layer model as this new study
confirms that the extra damping effect of the irregular cathode surface
technology is not that significant.

» A bigger computer than the Dell 28 cores Xeon ES-2697 V3 computer used in
the present study would be required in order to obtained a practical turn
around time to solve a transient 3D full cell VOF model.

« Adding the MHD physic to such a 3D full cell OpenFoam model is also quite
possible to do. OpenFoam has already been successfully used to solve MHD
flows.
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